Tree Triple Exponential Smoothing Analysis in Forecasting of Fertilizer Sales

Authors

  • Santi prayudani Prayudani
  • Wiwin Sry Adinda Banjarnahor Politeknik Negeri Medan
  • Muhammad Rivan Nugroho
  • Tazkiyatun Nisa Politeknik Negeri Medan

DOI:

https://doi.org/10.62123/aqila.v1i2.49

Keywords:

Urea fertilizer, Forecasting, Triple Exponential Smoothing

Abstract

The majority of Indonesia's population relies on the agricultural sector, making fertilizer an essential raw material to increase productivity. PT. Pupuk Iskandar Muda (PIM), faces challenges in maintaining the balance of urea fertilizer production and demand. In 2021, PIM's urea fertilizer production was unable to meet demand, while in 2019, 2020, and 2022 there was overproduction. This inventory non-optimization can lead to productivity bottlenecks and increased storage costs. One solution to this problem is forecasting. This research uses the Triple Exponential Smoothing (TES) forecasting method in forecasting urea fertilizer sales for the next period. The data used is fertilizer sales data from PT PIM for the 2019-2023 period. Evaluation of the accuracy value is done using the MAD, MSE, and MAPE matrices. The results of this study indicate that the TES method with a smoothing weight value of Alpha = 0.4, Beta = 0.2, and Gamma = 0.4 produces a MAD value of 22,017.75, MSE of 990,752,983.08, and MAPE of 22.3% which can be categorized as quite feasible to use in forecasting the demand for urea fertilizer at PT PIM seen from the MAPE value.

References

[1] F. I. Alfarisi, A. W. Rizqi, and S. S. Dahda, “Peramalan Penjulan Pupuk Organik PT. Petrokindo Cipta Selaras Dengan Mekanisme Single Exponential Smoothing Dan Moving Average,” Jurnal Teknik Industri, vol. 8, no. 2, pp. 101–109, 2022.

[2] O. Veza and I. R. Badri, “Simulasi Pengendalian Persediaan Pupuk Menggunakan Metode Monte Carlo,” Engineering And Technology International Journal, vol. 3, no. 2, pp. 97–109, 2021, doi: 10.55642/eatij.v3i02.

[3] F. Muhammad, Sukanta, and A. Dewanta, “Peramalan Penjualan Pupuk urea Dengan Menggunakan Metode Single Exponential Smoothing,” JATI UNIK : Jurnal Ilmiah Teknik dan Manajemen Industri, vol. 5, no. 2, pp. 80–87, Apr. 2022, doi: 10.30737/jatiunik.v5i2.2322.

[4] M. W. Rini and N. Ananda, “Perbandingan Metode Peramalan Menggunakan Model Time Series,” Tekinfo: Jurnal Ilmiah Teknik Industri dan Informasi, vol. 10, no. 2, pp. 88–101, May 2022, doi: 10.31001/tekinfo.v10i2.1419.

[5] S. Yunita, N. A. Mahesti, R. M. B. Sihaloho, and R. Setyadi, “Forecasting Pada Rantai Pasok Pabrik Penggilingan Daging Menggunakan Metode Time Series,” JURIKOM (Jurnal Riset Komputer), vol. 9, no. 3, p. 761, Jun. 2022, doi: 10.30865/jurikom.v9i3.4221.

[6] S. Lestari, A. S. Ahmar, and R. Ruliana, “Eksplorasi Metode Triple Exponential Smoothing Pada Peramalan Jumlah Penggunaan Air Bersih di PDAM Kota Makassar,” VARIANSI: Journal of Statistics and Its application on Teaching and Research, vol. 2, no. 3, p. 128, Aug. 2020, doi: 10.35580/variansiunm14641.

[7] R. Y. Hayuningtyas, “Implementasi Metode Triple Exponential Smoothing Untuk Prediksi Penjualan Alat Kesehatan,” Evolusi: Jurnal Sains dan Manajemen, vol. 8, no. 1, pp. 29–35, 2020.

[8] D. Amalia and R. Fajri, “Analisis Kadar Nitrogen Dalam Pupuk urea Prill Dan Granule Menggunakan Metode Kjeldahl Di PT Pupuk Iskandar Muda,” Quimica: Jurnal Kimia Sains dan Terapan, vol. 2, no. 1, pp. 28–32, 2020, [Online]. Available: https://ejurnalunsam.id/index.php/JQ

[9] F. Putra, H. F. Tahiyat, R. M. Ihsan, R. Rahmaddeni, and L. Efrizoni, “Penerapan Algoritma K-Nearest Neighbor Menggunakan Wrapper Sebagai Preprocessing untuk Penentuan Keterangan Berat Badan Manusia,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 4, no. 1, pp. 273–281, Jan. 2024, doi: 10.57152/malcom.v4i1.1085.

[10] D. Yanto, H. Susanto, K. Zulkifli, and R. F. Gupron, “Penerapan Algoritma K-Means Dalam Menentukan Kualitas Satuan Pendidikan Berdasarkan Nilai Internal Dan Eksternal,” Journal of Electrical Engineering and Computer (JEECOM), vol. 5, no. 2, pp. 319–328, 2023, doi: 10.33650/jeecom.v4i2.

[11] P. M. S. Tarigan, J. T. Hardinata, H. Qurniawan, M. Safii, and R. Winanjaya, “Implementasi Data Mining Menggunakan Algoritma Apriori Dalam Menentukan Persediaan Barang,” Jurnal Janitra Informatika dan Sistem Informasi, vol. 2, no. 1, pp. 9–19, Apr. 2022, doi: 10.25008/janitra.v2i1.142.

[12] R. J. Hyndman and G. Athanasopoulos, Forecasting: Principles and Practice, 3rd ed. Melbourne: Otexts:, 2021. Accessed: Mar. 28, 2024. [Online]. Available: OTexts.com/fpp3

[13] S. Syafira, J. Hutahaean, and Santoso, “Perbandingan Metode SMA dan MWA Dalam Memprediksi Jumlah Penjualan Alat Olahraga,” Building of Informatics, Technology and Science (BITS), vol. 3, no. 4, pp. 617–631, Mar. 2022, doi: 10.47065/bits.v3i4.1409.

[14] F. Hendajani, I. P. Wardhani, S. Widayati, and Soegijanto, “Data Analisis Permintaan Barang dengan Metode Peramalan (Data Analysis for Demand Parts with Forecasting Method),” EKOMABIS: Jurnal Ekonomi Manajemen Bisnis, vol. 3, no. 2, pp. 169–180, 2022, doi: 10.37366/ekomabis.v3i02.254.

[15] M. R. Athallah and A. F. Rozi, “Implementasi Data Mining Untuk Prediksi Peramalan Penjualan Produk Hj Karpet Menggunakan Metode Linear Regression,” Jurnal Jurnal Sains Dan Teknologi (JSIT), vol. 3, no. 1, p. 170, 2023, [Online]. Available: http://jurnal.minartis.com/index.php/jsit

[16] N. Andriani, S. Wahyuningsih, and M. Siringoringo, “Application of Double Exponential Smoothing Holt and Triple Exponential Smoothing Holt-Winter with Golden Section Optimization to Forecast Export Value of East Borneo Province,” Jurnal Matematika, Statistika dan Komputasi, vol. 18, no. 3, pp. 475–483, May 2022, doi: 10.20956/j.v18i3.17492.

[17] I. Setiawan, “Rancang Bangun Aplikasi Peramalan Persediaan Stok Barang Menggunakan Metode Weighted Moving Average (WMA) Pada Toko Barang XYZ,” Jurnal Teknik Informatika, vol. 13, no. 3, pp. 1–9, Aug. 2021.

Downloads

Published

2024-12-31

How to Cite

prayudani, S., Banjarnahor, W. S. A., Nugroho, M. R., & Tazkiyatun Nisa. (2024). Tree Triple Exponential Smoothing Analysis in Forecasting of Fertilizer Sales. Acceleration, Quantum, Information Technology and Algorithm Journal, 1(2), 64–73. https://doi.org/10.62123/aqila.v1i2.49

Most read articles by the same author(s)