K-Means Algorithm for Clustering Students Based on Areas of Expertise (A Case Study)

Authors

  • Yuyun Yusnida Lase Yuyun Politeknik Negeri Medan
  • Christian Roi Tua Sinaga Politeknik Negeri Medan
  • Muhammad Rivan Nugroho Politeknik Negeri Medan
  • Muhammad Rasyid Ridha Politeknik Negeri Medan

DOI:

https://doi.org/10.62123/aqila.v1i1.23

Keywords:

Students Expertise, K-Means, Clustering, Prediction

Abstract

Every student of the Software Engineering Technology study program, the Computer and Informatics Department of the Politeknik Negeri Medan in the lecture process is required to take all the courses in the curriculum. From the courses in the curriculum, there are several subject groups that shape student expertise, such as Software Engineering, System Analyst, Database Administrator, and IT Entrepreneur. It is hoped that this expertise will later be used as a reference by students in carrying out their thesis at the end of lectures. The purpose of this study is to group students based on their respective expertise based on data processing of student course scores related to each skill. The data used is data on student scores for batches of 2020 and 2021 with a range of courses from semester 1 to semester 3. The data is tested by implementing the K-Means algorithm. The results of the tests that have been carried out show the grouping of students based on their expertise, with 7 times the number of iterations. Then, data testing was carried out with the RapidMiner application to get the results of the distribution of cluster members obtained, including 12 students occupying Software Engineer skills, 21 students with System Analyst skills, 5 students with Database Administrator skills, and 31 students with IT Entrepreneur skills, along with the distribution chart. Thus, the K-Means algorithm is quite good at grouping students based on their expertise

References

Yusra, D. Olivita, and Dkk., “Perbandingan Klasifikasi Tugas Akhir Mahasiswa Jurusan Teknik Informatika Menggunakan Metode Naïve Bayes Classifier dan K-Nearest Neighbor,” J. Sains, Teknol. dan Ind., vol. 14, no. 1, pp. 79–85, 2016.

D. Kuswandi, E. Surahman, Z. Zufar At Thaariq, and M. Muthmainnah, “K-Means Clustering of Student Perceptions on Project-Based Learning Model Application,” in 2018 4th International Conference on Education and Technology (ICET), 2018, pp. 9–12, doi: 10.1109/ICEAT.2018.8693932.

F. Istighfar, A. B. P. Negara, and T. Tursina, “Klasifikasi Bidang Keahlian Mahasiswa Menggunakan Algoritma Naive Bayes,” J. Sist. dan Teknol. Inf., vol. 11, no. 1, p. 77, 2023, doi: 10.26418/justin.v11i1.52402.

N. Fuad, “Algoritma Fuzzy Naive Bayes Untuk Mengklasifikasikan Bidang Keahlian Mahasiswa Teknik Informatika Universitas Islam Lamongan,” Joutica, vol. 4, no. 2, p. 302, 2019, doi: 10.30736/jti.v4i2.330.

C. Nas, “Data Mining Pengelompokan Bidang Keahlian Mahasiswa Menggunakan Algoritma K-Means (Studi Kasus : Universitas Cic Cirebon),” Syntax J. Inform., vol. 9, no. 1, pp. 1–14, 2020, doi: 10.35706/syji.v9i1.3472.

H. Sulastri and A. I. Gufroni, “Penerapan Data Mining Dalam Pengelompokan Penderita Thalassaemia,” J. Nas. Teknol. dan Sist. Inf., vol. 3, no. 2, pp. 299–305, 2017, doi: 10.25077/teknosi.v3i2.2017.299-305.

Y. D. Darmi and A. Setiawan, “Penerapan Metode Clustering K-Means Dalam Pengelompokan Penjualan Produk,” J. Media Infotama, vol. 12, no. 2, pp. 148–157, 2017, doi: 10.37676/jmi.v12i2.418.

S. M. Mr and A. L. Caroline, “The Study on Clustering Analysis in Data Mining,” Int. J. Data Min. Tech. Appl., vol. 8, no. 1, pp. 46–49, 2019, doi: 10.20894/ijdmta.102.008.001.011.

F. P. Dewi, P. S. Aryni, and Y. Umaidah, “Implementasi Algoritma K-Means Clustering Seleksi Siswa Berprestasi Berdasarkan Keaktifan dalam Proses Pembelajaran,” JISKA (Jurnal Inform. Sunan Kalijaga), vol. 7, no. 2, pp. 111–121, 2022, doi: 10.14421/jiska.2022.7.2.111-121.

M. R. Muttaqin and M. Defriani, “Algoritma K-Means untuk Pengelompokan Topik Skripsi Mahasiswa,” Ilk. J. Ilm., vol. 12, no. 2, pp. 121–129, 2020, doi: 10.33096/ilkom.v12i2.542.121-129.

D. Zakiyah, N. Merlina, and N. A. Mayangky, “Penerapan Algoritma K-Means Clustering Untuk Mengetahui Kemampuan Karyawan IT,” Comput. Sci., vol. 2, no. 1, pp. 59–67, 2022, doi: 10.31294/coscience.v2i1.623.

A. E. Wibowo and T. Habanabakize, “K-Means Clustering untuk Klasifikasi Standar Kualifikasi Pendidikan dan Pengalaman Kerja Guru SMK di Indonesia,” J. Din. Vokasional Tek. Mesin, vol. 7, no. 2, pp. 152–163, 2022, doi: 10.21831/dinamika.v7i2.53848.

H. Shen and Z. Duan, “Application Research of Clustsering Algorithm Based on K-Means in Data Mining,” in 2020 International Conference on Computer Information and Big Data Applications (CIBDA), 2020, pp. 66–69, doi: 10.1109/CIBDA50819.2020.00023.

A. R. Lubis, S. Prayudani, Y. Fatmi, and O. Nugroho, “Classifying News Based on Indonesian News Using LightGBM,” in 2022 International Conference on Computer Engineering, Network, and Intelligent Multimedia (CENIM), Nov. 2022, pp. 162–166, doi: 10.1109/CENIM56801.2022.10037401.

A. R. Lubis, M. K. M. Nasution, O. S. Sitompul, and E. M. Zamzami, “The feature extraction for classifying words on social media with the Naïve Bayes algorithm,” IAES Int. J. Artif. Intell., vol. 11, no. 3, pp. 1041–1048, 2022, doi: 10.11591/ijai.v11.i3.pp1041-1048.

A. R. Lubis, M. K. M. Nasution, O. S. Sitompul, and E. M. Zamzami, “Spelling Checking with Deep Learning Model in Analysis of Tweet Data for Word Classification Process,” in 2022 9th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), 2022, pp. 343–348, doi: 10.23919/EECSI56542.2022.9946476.

T. Widiyaningtyas, M. I. W. Prabowo, and M. A. M. Pratama, “Implementation of K-means clustering method to distribution of high school teachers,” in 2017 4th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), 2017, pp. 1–6, doi: 10.1109/EECSI.2017.8239083.

M. Mardi and M. R. Keyvanpour, “GBKM: A New Genetic Based K-Means Clustering Algorithm,” in 2021 7th International Conference on Web Research (ICWR), 2021, pp. 222–226, doi: 10.1109/ICWR51868.2021.9443113.

W. Purba, S. Tamba, and J. Saragih, “The effect of mining data k-means clustering toward students profile model drop out potential,” J. Phys. Conf. Ser., vol. 1007, no. 1, 2018, doi: 10.1088/1742-6596/1007/1/012049.

R. Baruri, A. Ghosh, R. Banerjee, A. Das, A. Mandal, and T. Halder, “An Empirical Evaluation of k-Means Clustering Technique and Comparison,” in 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), 2019, pp. 470–475, doi: 10.1109/COMITCon.2019.8862215

S. D. Prasetiani and N. Rochmawati, “Penerapan Data Mining Untuk Clustering Menu Favorit Menggunakan Algoritma K-Means (Studi Kasus Kedai Expo),” J. Informatics Comput. Sci., vol. 3, no. 03, pp. 278–286, 2022, doi: 10.26740/jinacs.v3n03.p278-286.

R. Ahuja, A. Solanki, and A. Nayyar, “Movie Recommender System Using K-Means Clustering AND K-Nearest Neighbor,” in 2019 9th International Conference on Cloud Computing, Data Science & Engineering (Confluence), 2019, pp. 263–268, doi: 10.1109/CONFLUENCE.2019.8776969.

Yahya and W. P. Hidayanti, “Penerapan Algoritma K-Nearest Neighbor Untuk Klasifikasi Efektivitas Penjualan Vape ( Rokok El ektrik ) pada ‘ Lombok Vape On ,’” J. Inform. dan Teknol., vol. 3, no. 2, pp. 104–114, 2020.

Downloads

Published

2024-06-23

How to Cite

Yuyun, Y. Y. L., Sinaga, C. R. T., Nugroho, M. R., & Ridha, M. R. (2024). K-Means Algorithm for Clustering Students Based on Areas of Expertise (A Case Study). Acceleration, Quantum, Information Technology and Algorithm Journal, 1(1), 6–15. https://doi.org/10.62123/aqila.v1i1.23