Modification of K-Nearest Neighbor Method with Normalized Euclidean Distance for Classification of Local Berastagi Orange Quality

Authors

  • Ananda Afifah Siregar Universitas Muhammadiyah Sumatera Utara
  • Al-Khowarizmi Universitas Muhammadiyah Sumatera Utara

DOI:

https://doi.org/10.62123/enigma.v2i2.60

Keywords:

Classification, Berastagi Local Orange, K-Nearest Neighbor, Normalized Euclidean Distance, Matlab

Abstract

Local Indonesian fruit is one example of Indonesia's natural wealth, one of which is the local Berastagi orange. Oranges are rich in vitamin C which is good for body health. Oranges tend to have a sour, fresh, and sweet taste. The vitamin C contained in oranges is 97.3 milligrams or equivalent to 163% of the nutritional adequacy rate. Not only Vitamin C, oranges also contain vitamin B6, antioxidants and fiber. Therefore, it is highly recommended to consume oranges every day because oranges can facilitate digestion, reduce the risk of diabetes, maintain healthy skin, and also maintain endurance. This study aims to apply the Classification and assessment of the quality of local oranges using the K-Nearest Neighbor (KNN) method modified with Normalized Euclidean distance to classify the quality of local Berastagi oranges based on the color of the fruit image. The research dataset was taken from 100 images of local Berastagi oranges, where the 100 images were divided into 2, namely, good oranges and bad oranges. The classification process for local Berastagi oranges uses the matlab application.

Downloads

Download data is not yet available.

References

[1] E. Fauzi, M. V. Sinatrya, N. D. Ramdhani, R. Ramadhan, and Z. M. R. Safari, “Pengaruh kemajuan teknologi informasi terhadap perkembangan akuntansi,” Jurnal riset pendidikan ekonomi, vol. 7, no. 2, pp. 189–197, 2022.

[2] A. R. P. Misar, “Penerapan Dan Penggunaan Teknologi Maju Bagi Industri Kreatif Desain Grafis Dalam Menghadapi Asean Economic Community 2015”.

[3] B. H. Pangestu, “Data Mining Menggunakan Algoritma Naive Bayes Classifier Untuk Evaluasi Kinerja Karyawan,” Jurnal Riset Matematika, pp. 177–184, 2023.

[4] I. P. N. Fajarini, I. M. I. Subroto, and A. Riansyah, “Klasifikasi Kepakaran Reviewer Menggunakan Algoritma K-Nearest Neighbor (KNN),” in Prosiding Seminar Riset Mahasiswa, 2022, pp. 272–280.

[5] R. K. Halder, M. N. Uddin, M. A. Uddin, S. Aryal, and A. Khraisat, “Enhancing K-nearest neighbor algorithm: a comprehensive review and performance analysis of modifications,” J Big Data, vol. 11, no. 1, p. 113, 2024.

[6] S. Zhang, “Challenges in KNN classification,” IEEE Trans Knowl Data Eng, vol. 34, no. 10, pp. 4663–4675, 2021.

[7] R. S. Al-Khowarizmi, M. K. M. Nasution, and M. Elveny, “Sensitivity of MAPE using detection rate for big data forecasting crude palm oil on k-nearest neighbor,” Int. J. Electr. Comput. Eng, vol. 11, no. 3, pp. 2696–2703, 2021.

[8] B. V. Jayadi, T. Handhayani, and M. D. Lauro, “Perbandingan Knn Dan Svm Untuk Klasifikasi Kualitas Udara Di Jakarta,” Jurnal Ilmu Komputer dan Sistem Informasi, vol. 11, no. 2, pp. 1–7, 2023.

[9] H. Sunandar, “Perbaikan kualitas Citra Menggunakan Metode Gaussian Filter,” MEANS (Media Informasi Analisa dan Sistem), pp. 19–22, Jun. 2017, doi: 10.54367/means.v2i1.18.

[10] S. Maulana, “Klasifikasi Kualitas Buah Pir Berdasarkan Warna Dan Tekstur Dengan Menggunakan Metode K-Nearest Neighbor (KNN),” Universitas Islam Lamongan, 2021.

[11] A. Nosseir and S. E. A. Ahmed, “Automatic Classification for Fruits’ Types and Identification of Rotten Ones using k-NN and SVM.,” International Journal of Online & Biomedical Engineering, vol. 15, no. 3, 2019.

[12] N. F. Munazhif, G. J. Yanris, and M. N. S. Hasibuan, “Implementation of the K-nearest neighbor (kNN) method to determine outstanding student classes,” Sinkron: jurnal dan penelitian teknik informatika, vol. 7, no. 2, pp. 719–732, 2023.

[13] A. R. Lubis and M. Lubis, “Optimization of distance formula in K-Nearest Neighbor method,” Bulletin of Electrical Engineering and Informatics, vol. 9, no. 1, pp. 326–338, 2020.

[14] Y. Dang, N. Jiang, H. Hu, Z. Ji, and W. Zhang, “Image classification based on quantum K-Nearest-Neighbor algorithm,” Quantum Inf Process, vol. 17, pp. 1–18, 2018.

[15] H. A. Abu Alfeilat et al., “Effects of Distance Measure Choice on K-Nearest Neighbor Classifier Performance: A Review,” Big Data, vol. 7, no. 4, pp. 221–248, Dec. 2019, doi: 10.1089/big.2018.0175.

Downloads

Published

2025-04-11

How to Cite

Siregar, A. A., & Al-Khowarizmi. (2025). Modification of K-Nearest Neighbor Method with Normalized Euclidean Distance for Classification of Local Berastagi Orange Quality. Electronic Integrated Computer Algorithm Journal, 2(2), 91–104. https://doi.org/10.62123/enigma.v2i2.60