AI and ML Integration Using Collaborative Filtering in Movie Recommendations

Authors

  • Fitria Widianingsih Telkom University
  • Ledi Diniyatullah Telkom University

DOI:

https://doi.org/10.62123/enigma.v2i2.55

Keywords:

Artificial Intelligence, Machine Learning, Collaborative Filtering, Movie Recommendation, Singular Value Decomposition

Abstract

This study aims to integrate Artificial Intelligence (AI) and Machine Learning (ML) technologies with Collaborative Filtering (CF) to build a more accurate and personalized movie recommendation system. This system uses the Singular Value Decomposition (SVD) algorithm to reduce the dimensionality of data and generate rating predictions for users of movies they have not watched. This study implements a dataset from MovieLens to test the effectiveness of the model in providing recommendations. The experimental results show that the system successfully predicts user ratings with fairly high accuracy, reflected in the average Root Mean Square Error (RMSE) value of 0.85 for the five users tested. Although these results show good performance, challenges such as cold start problems and data sparsity are still major obstacles in producing more optimal recommendations. Therefore, this study also proposes the use of hybrid filtering, deep learning, and the use of external data to improve prediction accuracy and overcome these limitations.

Downloads

Download data is not yet available.

References

[1] Aggarwal, C. C., 2016, Recommender Systems. Cham: Springer International. Publishing. doi: 10.1007/978-3-319-29659-3.

[2] Koren, Y., Bell, R. and Volinsk, C. (2009) Matrix Factorization Techniques for Recommender Systems. Computer, 42, 30-37.https://doi.org/10.1109/MC.2009.263

[3] Muliadi, K. H., & Lestari, C. C. (2019). Rancang Bangun Sistem Rekomendasi Tempat Makan Menggunakan Algoritma Typicality Based Collaborative Filtering Engineering of a Dining Place Recommendation System Using Typicality Based Collaborative Filtering Algorithm. Jurnal Teknologi Informasi Techno.Com, 18(4), 275–287. https://doi.org/10.33633/tc.v18i4.2515 .

[4] Saifudin, I., & Widiyaningtyas, T. (2024). Systematic Literature Review on Recommender System: Approach, Problem, Evaluation Techniques, Datasets. IEEE, 12, 19827–19847.https://doi.org/10.1109/ACCESS.2024.335927

[5] Putri, M. W., Muchayan, A., & Kamisutara, M. (2018). Sistem Rekomendasi Produk Pena Eksklusif Menggunakan Metode Content-Based Filtering dan TF-IDF. Jointecs (Journal of Information Technology and Computer Science), 3(1), 229–236.

[6] Sari, R. K., Suharso, W., & Azhar, Y. (2020). Pembuatan Sistem Rekomendasi Film dengan Menggunakan Metode Item Based Collaborative Filtering pada Apache Mahout. Repositor, 2(6), 767–774. https://doi.org/10.22219/repositor.v2i6.30715

[7] Arfisko, H. H., & Wibowo, A. T. (2022). Sistem Rekomendasi Film Menggunakan Metode Hybrid Collaborative Filtering Dan Content-Based Filtering. E-Proceeding of Engineering, 9(3), 2149–2159.

[8] Tewari, A. S. (2020). Generating Items Recommendations by Fusing Content and User-Item based Collaborative Filtering. Procedia Computer Science, 167, 1934–1940. https://doi.org/10.1016/j.procs.2020.03.215

[9] Natarajan, S., Vairavasundaram, S., Natarajan, S., & Gandomi, A. H. (2020). Resolving data sparsity and cold start problem in collaborative filtering recommender system using Linked Open Data. Expert Systems with Applications, 149. https://doi.org/10.1016/j.eswa.2020.113248

[10] Hazizah, C. Y., & Widiyaningtyas, T. (2024). Analisis Metode Collaborative Filtering menggunakan KNN dan SVD++ untuk Rekomendasi Produk E-commerce Tokopedia. Edumatic: Jurnal Pendidikan Informatika, 8(2), 595–604. https://doi.org/10.29408/edumatic.v8i2.27793

[11] Meitrina Tampubolon, Heleni Gratia (2024). Penerapan Dekomposisi QR dalam Meningkatkan Akurasi Sistem Rekomendasi Berbasis Collaborative Filtering. Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia 113523107@std.stei.itb.ac.id.

[12] Santoso, Joseph Teguh (2023). Kecerdasan Buatan (Artificial Intelligence). Yayasan Prima Agus Teknik Bekerja sama dengan Universitas Sains & Teknologi Komputer (Universitas STEKOM)

[13] Zhang, Shuai & Yao, Lina & Sun, Aixin & Tay, Yi. (2017). Deep Learning Based Recommender System: A Survey and New Perspectives. ACM Computing Surveys. 10.1145/3285029.

[14] Ricci, F., Rokach, L., & Shapira, B. (2010). Recommender Systems Handbook. In Recommender Systems Handbook (Vols. 1–35, pp. 1–35). https://doi.org/10.1007/978-0-387-85820-3_1

[15] Sitti Aliyah Azzahra, Syafran Nurrahman, & Aep Saefullah. (2024). Integrasi Kecerdasan Buatan Dalam Sistem Rekomendasi Produk Untuk E-Commerce. Jurnal Sains Dan Teknologi, 3(1), 21–28.

[16] M. Waruwu, “Metode Penelitian dan Pengembangan (R&D): Konsep, Jenis, Tahapan dan Kelebihan,” Jurnal Ilmiah Profesi Pendidikan, vol. 9, no. 2, pp. 1220–1230, May 2024, doi: 10.29303/jipp.v9i2.2141.

[17] Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. 2019. Deep Learning Based Recommender System: A Survey and New Perspectives. ACM Comput. Surv. 52, 1, Article 5 (January 2020), 38 pages. https://doi.org/10.1145/3285029

[18] F. Maxwell Harper dan Joseph A. Konstan. 2015. Kumpulan Data MovieLens: Sejarah dan Konteks. ACM Trans. Interact. Intell. Syst. 5, 4, Artikel 19 (Januari 2016), 19 halaman. https://doi.org/10.1145/2827872

[19] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. 2017. Neural Collaborative Filtering. In Proceedings of the 26th International Conference on World Wide Web (WWW '17). International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, CHE, 173–182. https://doi.org/10.1145/3038912.3052569

[20] Gunawardana, A., Shani, G. (2015). Evaluating Recommender Systems. In: Ricci, F., Rokach, L., Shapira, B. (eds) Recommender Systems Handbook. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7637-6_8

[21] Zhang, Q., Lu, J., & Jin, Y. (2021). Artificial intelligence in recommender systems. Complex & Intelligent Systems, 7(1), 439–457. https://doi.org/10.1007/s40747-020-00212-w

[22] E. Masciari, A. Umair and M. H. Ullah, "A Systematic Literature Review on AI-Based Recommendation Systems and Their Ethical Considerations," in IEEE Access, vol. 12, pp. 121223-121241, 2024, doi: 10.1109/ACCESS.2024.3451054.

Downloads

Published

2025-04-11

How to Cite

Fitria Widianingsih, & Ledi Diniyatullah. (2025). AI and ML Integration Using Collaborative Filtering in Movie Recommendations. Electronic Integrated Computer Algorithm Journal, 2(2), 71–75. https://doi.org/10.62123/enigma.v2i2.55