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 Efficient data compression techniques are required to minimize storage and processing 
overhead due to modern systems' growing amount of data. Huffman Coding is a lossless 

compression technique that maintains data integrity by assigning shorter bit codes to characters 

appearing frequently, reducing size. Our analysis focuses on two implementation 

methodologies: greedy technique and divide and conquer. To find efficient solutions, divide-
and-conquer algorithms partition problems into smaller components. In contrast, greedy 

algorithms strive to attain the utmost attainable result at each level. Our extensive investigation 

centers on the timing and space intricacies of diverse methodologies, enabling a comparative 
analysis that underscores their respective merits and drawbacks.  
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1. INTRODUCTION 

 

As organizations accumulate more data, they will undoubtedly face the task of identifying effective data compression solutions 

[1][2]. Data compression aims to minimize data size without sacrificing accuracy. In recent years, this method has grown in 

significance across several domains [3][4][5]. The foundation of many deduction methods is the Huffman code [6][7][8]. To avoid 

altering the data storage method, lossless compression may be used to remove unused storage space [9]. To do this, codes are 

assigned to the letters that are entered, representing different instances. Hoffmann's code analysis is ensured to be correct  by the 

use of techniques such as greedy programming and division and conquer [10]. The greedy algorithm aims to find the best solution 

for each problem by choosing the most favorable option in each subregion [11][12]. The Divide and conquer design technique 

separates a work into smaller portions, saving time. Each element or component is processed and finished separately, and then  

combined to generate the results [13][14]. This research examines the intricacy of space and time to evaluate the effectiveness of 

the two algorithms that have been developed. Huffman coding is often regarded as necessary for data compression [15][16][17][18]. 

Historically, this strategy has decreased profiles by correctly experimenting with various program parameters to enhance 

performance. Research indicates that Huffman coding has advantages and disadvantages [6][19][20][21]. Despite its computational 

intensity, particularly in tree creation, this strategy effectively decreases data [4]. The time complexity of O(n log n) is often enough, 

however, it may be enhanced [22]. Extensive testing of encryption and decryption methods with long paths is necessary because of 

the computational difficulties involved. In order to achieve efficient data compression, it is crucial to take into account t he specific 

geographical and temporal boundaries of each technique. Our research strategy presents several challenges, including time 

constraints and the need for advanced techniques. An in-depth evaluation will be conducted on several software methodologies for 

Huffman coding. This paper proceeds as follows: Section 1 presents the introduction and related works. Section 2 presents the 

methodology used in this study. Sections 3 and 4 present the analysis of the time and space complexity. Section 5 presents the 

results and discussion and the conclusion is presented in Section 6.   
 

 

2. METHODOLOGY 
 

Many diverse companies and services have the potential to utilize Huffman Coding. Initially, it can be inferred that organizations 

such as WinZip, WinRAR, and 7-Zip are highly probable to employ Huffman coding as a means to facilitate the compression 

procedure, given that Huffman coding is an algorithm utilized for data compression. Huffman coding is utilized in image and video 

compression techniques, such as JPEG and MPEG, to facilitate the compression process. Telecommunication firms like AT&T and 

Verizon may employ Huffman coding to optimize data transmission and storage. 
 

2.1 Huffman Code

The Huffman Mathematical Model can be presented as follows: The construction algorithm can be formally formalized and 

decomposed into multiple sequential parts. Frequency analysis can be defined as: 

 

                                                             ( )     f s count of s in S=                                                                           (1) 
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Let S be the original string consisting of characters s, and let f(s) represent the frequency of character s in string S. The frequency 

table is created in the following manner: 

 

      ( , ( )) |F s f s s S=                                                                              (2) 

 

where F is the frequency table, a set of tuples where each tuple consists of a character s and its frequency f(s). The initialization of 

the priority queue is provided as:  

 

    PrinorityQueue( )Q F=                                                                          (3) 

 

Using the elements from F as an initialization, we create a priority queue Q. The elements in Q are sorted in ascending order of 

frequency. The factors that decide when a node in a Huffman tree is created are:  

 

    ( , ( ))sn s f s=                                                                                             (4) 

 

The frequency of the character s is represented by the Huffman Tree node ns. If there are many nodes in the priority queue, then. 

You can think of this loop as the building of a tree:  

 

   

| | 1:

, .pop(), .pop()

( , ( ) ( ))

a b

a b

while Q

n n Q Q

nc null f n f n



=

= +

                                                                     (5) 

 

The two lowest-frequency nodes, na and nb, are eliminated from Q. The frequencies of the newly created node nc, which is the 

parent of the nodes na and nb, are equal to the total of those of the two nodes. The root assignment is determined by the equation:  

 

   root=Q.peek()                                                                                (6) 

 

The last node Q is transformed into the root of the Huffman Tree. To assign Huffman codes to each leaf node, traverse the tree:  

 

    

( ) if n is a leaf node

( , ) Encode( , "0")

Encode( , "1")

l

r

C s p

Encode n p n p

n p

=


= +
 +

                                (7) 

 

n represents a node in the Huffman Tree, and n1 and nr are the left and right children of n, respectively. P is the path string 

accumulated from the root to the node n. C is a dictionary mapping characters to their respective Huffman codes. The output of the 

construction is expressed as:   

 

( )
i

i
s S

E C s


=                                                                                                  (8) 

 

E is the encoded string constructed by concatenating the Huffman codes C(si) for each character si in the original S.  denotes 

concatenation of string. The pseudocode implementation of Huffman codes is displayed as follows:    

 
Algorithm 1: Huffman Tree Construction 

1:   Initialize frequencies as new HashMap 

2:   for each character in originalString do 

3:         Increment character frequency in frequencies 

4:   Initialize priorityQueue as new PriorityQueue 

5:   for each character, frequency in frequencies do 

6:         Create new HuffmanNode and add to priorityQueue 

7:   while size of priorityQueue > 1 do 

8:        Remove two nodes with lowest frequency 

9:      Create new node with sum of frequencies 

10:      Add new node to priorityQueue 

11:   root ← peek of priorityQueue 
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12:   Initialize huffmanCodes as new HashMap 

13:   Encode(root, "", huffmanCodes) 

14:   Initialize encodedString as new StringBuilder 

15:   for each character in originalString do 

16:       Append Huffman code to encodedString 

17:   if root is a leaf then 

18:       Output ← repeat root.character for its frequency 

19:   else 

20:       Decode using root and encodedString 

21: end procedure  

2.2 Divide and Conquer 

This algorithm aims to recursively divide a string into two halves until each substring is of length 1, updating a frequency map 

for each character.  

if | | 1S =                                                                                                 (9) 

 

Then update the frequency map. |S| denotes the length of the string S. The frequency map F is updated such that F|c| = F|c| + 1 

for the character c in string S.  The recursive case is expressed as follows:  

 

[0,middle - 1], [middle,end]

| |
middle=

2

left right

left right

S S S

S S S S

S

= +

= =

 
 
 

                                         (10) 

 

S is recursively divided into two halves Sleft and Sright. The function Map Frequency is called recursively in both halves. 

 

Algorithm 2: Divide and Conquer Frequency Mapping  

1: if length of inputString == 1 then 

2:       Update frequency map 

3:   else 

4:       middle ← length of inputString / 2 

5:       leftString ← inputString[0, middle-1] 

6:       rightString ← inputString[middle, end] 

7:       MapFrequency(leftString) 

8:       MapFrequency(rightString) 

9: end procedure 

 

2.3 Merge for Sorting by Frequency 

This algorithm combines two sorted lists (sorted by frequency) into one list, preserving the order based on frequency. The 

initialization is done in the following manner:  

 

   , , 0,0,0i j k =                                                                                         (11) 

 

Then, the merging process is expressed as follows:  

 

               

   

while | | and | |:

if then [ ]

else 

i L j R

F L i F R j M k L i

M k R j

 

    + + = + +   

+ + = + +

                                    (12) 

 

L and R are two halves that are being combined, resulting in M being the merged outcome. The function F[x] denotes the 

frequency of the element x. Adding the remaining elements: 

 

while | |: [ ] [ ]

while | |: [ ] [ ]

i L M k L i

i R M k R i

 + + = + +

 + + = + +
                                                            (13) 
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Algorithm 3: Merge for Sorting by Frequency  

1:   Initialize i, j, k ← 0 

2:   while i < Left.length and j < Right.length do 

3:       if Left[i] frequency > Right[j] frequency then 

4:           mergedString[k] ← Left[i] 

5:           i ← i + 1 

6:       else 

7:           mergedString[k] ← Right[j] 

8:           j ← j + 1 

9:      k ← k + 1 

10:   while i < Left.length do 

11:       mergedString[k] ← Left[i] 

12:       i ← i + 1 

13:       k ← k + 1 

14:   while j < Right.length do 

15:       mergedString[k] ← Right[j] 

16:       j ← j + 1 

17:       k ← k + 1 

18: end procedure 

 

2.4 Modified Merge Sort for Frequency Sorting 

The initial case is provided by:   

 

               if | | 1 return S S=                                                                                  (14) 

 

The concept of recursive sorting is defined as follows:  

 

| |
middle=

2

FrequencySort[S[0,middle - 1])

FrequencySort( [middle,end])

left

right

S

S

S S

 
 
 

=

=

                                                                                 (15) 

 

return Merge( , , )left rightS S S                                                                                                         (16) 

 

The Merge function is utilized to combine the two sorted halves.  

 

Algorithm 4: Modified Merge Sort for Frequency Sorting  

1:   if length of string == 1 then 

2:       return string 

3:   else 

4:       middle ← length of string / 2 

5:       leftString ← string[0, middle-1] 

6:       rightString ← string[middle, end] 

7:       FrequencySort(leftString) 

8:       FrequencySort(rightString) 

9:      return Merge(leftString, rightString, string) 

11: end procedure 

 

2.5 Greedy Technique 

Initially, we compute the frequency of every individual character in the given input string.  

 

( ) count of  in f s s S=                                                                                   (17) 

Next, create the frequency table:  

 

{( , ( )) | }F s f s s S=                                                                                       (18) 
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initialize a priority queue to store Huffman nodes, prioritizing nodes with lower frequencies. A priority queue implemented using 

Huffman code is provided:  

 

priorityQueue( , by ( ))

Each element in  is Huffman code ( , ( ))s

Q F f s

Q n s f s

=

=
                                         (19) 

 

create the Huffman Tree:  

 

while | | 1:

let .remove(), .remove()

( , ( ) ( ), , )

. ( )

left

new left right left right

new

Q

n Q nright Q

n null f n f n n n

Q add n



= =

= +
                                                    (20) 

 

leftn  and 
rightn  are nodes with the lowest frequencies.  newn is a new node with its frequency being the sum of  

leftn and 
rightn . Root assignment as follows:  

 

root .peek()Q=                                                                                            (21) 

 

The encoding process is as follows:  

 

( .character)  if  is a leaf

encode( , ) Encode( .leftChild, "0")

Encode( .rightChild, "1")

H n c n

n c n c

n c

=


+
 +

                                                   (22) 

 

n symbolizes a node in the Huffman Tree. The code string c represents the sequence of code gathered from the root to the node n. 

H is a dictionary that associates characters with their respective Huffman codes. 

 

Algorithm 5: Greedy Technique  

1:   Initialize frequencies as new HashMap 

2:   for each character in originalString do 

3:       Increment character frequency in frequencies 

4:   Initialize priorityQueue as new PriorityQueue based on frequency 

5:   for each character, frequency in frequencies do 

6:       Create new HuffmanNode(character, frequency) and add to priorityQueue 

7:   while size of priorityQueue > 1 do 

8:       left ← priorityQueue.remove() (Node with lowest frequency) 

9:      right ← priorityQueue.remove() (Node with next lowest frequency) 

10:      sumFrequency ← left.frequency + right.frequency 

11:      Create new node with no character, sumFrequency, left, right 

12:      priorityQueue.add(new node) 

13:   root ← priorityQueue.peek() (The only node in the priorityQueue is the root of the Huffman Tree) 

14:   Initialize huffmanCodes as new HashMap 

15:   Encode(root, "", huffmanCodes) 

16: end procedure 

17: procedure Encode(node, code, huffmanCodes) 

18:   if node is not null then 

19:      if node is a leaf then 

20:          if code is empty then 

21:              huffmanCodes.put(node.character, "1") (Handle single character edge case) 

22:          else 

23:              huffmanCodes.put(node.character, code) 

24:      Encode(node.leftChild, code + "0", huffmanCodes) 

25:      Encode(node.rightChild, code + "1", huffmanCodes) 

26: end procedure 
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3. TIME COMPLEXITY 
 

When evaluating the temporal complexity of the Huffman coding algorithm, several steps contribute to the overall difficulty. 

The greedy implementation starts by creating a frequency table based on the input string. Inserting each of the k unique characters 

into the priority queue has a complexity of O(log k). Thus, the total complexity of this phase is O(k log k). Given that the value of 

k cannot exceed n, this aspect typically simplifies to O(n log n) in the worst-case situation, assuming that each character is unique. 

The Huffman tree is built iteratively by taking the two nodes with the lowest frequency from the queue and combining them into a 

new node, which is then inserted back into the queue. Every iteration of the technique takes logarithmic time, which is directly 

proportional to the queue size, and the process is repeated k-1 times. The result is a total complexity of O(k log k), which, for values 

of k close to n, is roughly equivalent to O(n log n). Assigning codes to individual characters involves encoding, which involves 

traversing the tree. When each letter is checked one at a time, this pass takes O(n) time. On the other hand, the decryption process 

has to be done for every piece of ciphertext. n letters are repeated n times, which gives the length of the encrypted string. This 

method takes O(n) time. Lastly, in the greedy Huffman coding method, it takes O(n log n) time to do the work needed to build the 

Huffman tree and process the priority queue. 

Divide and conquer methods are similar, but they get trickier when you need to sort characters because the changed sequence 

order groups them by how often they appear. The sorting method takes O(n log n) time to run. Using this method to build Huffman 

trees one step at a time takes O(n log n) time. The amount of time needed for greedy encryption and decryption is the same. It takes 

O(n log n) time to run greedy Huffman algorithms and divide-and-conquer algorithms. The problem that still needs to be solved is 

making a Huffman tree, a sorting method, and a frequency table. 

 

 

4. SPACE COMPLEXITY 

 
The time complexity of Huffman coding is closely linked to space complexity because of how the data is structured. We use a 

hash map that takes O(k) amount of room to store the frequency value of each character in the string. In this case, k stands for the 

string's total amount of unique characters. Even though K can be equal to n, the number of letters in the alphabet is generally less 

than n. There must be O(k) gaps between the Huffman nodes in the top row, where k is the number of unique characters. It also 

stores the Huffman code that goes with each word as a separate hash. The amount of room needed to store these codes gets 

exponentially harder as K goes up. The amount of room that greedy technology needs is directly related to the number of unique 

characters. In the worst case, the space complexity can be cut down to O(n) if each character is unique. In real life, though, this is 

O(k). It takes O(k) room to use the divide-and-conquer approach for frequency and Huffman codes because they share data 

structures. Unlike the greedy approach, the divide and conquer strategy often does not employ a priority queue during the 

construction of a Huffman tree. Instead, it constructs the tree directly from data partitions, resulting in significant space  expenses 

caused by improper handling of repetitive stack calls. The majority of storage space requirements are still attributed to frequency 

maps and Huffman codes. Both approaches have a fundamental constraint on space, requiring O(k) storage for the Huffman code 

and frequency map. Assuming that the value of k is approximately equal to the value of n, both approaches have a total spatial 

complexity of O(n) in the worst case. The greedy approach employs a priority queue, but it does not fundamentally alter the broad 

classification of space complexity. 

 

5. RESULTS AND DISCUSSION 

 

When comparing the time and space complexities of implementing Huffman coding using the greedy strategy versus the divide 

and conquer approach, both methods exhibit the same time and space complications. Both methods exhibit a time complexity of O 

(n log n) and function linearly. All algorithms have the same space complexity, each necessitating O(n) space. However, the greedy 

technique demonstrates more computational efficiency in comparison to the divide-and-conquer approach, primarily because of the 

recursive tradeoffs. However, the main difference between the two was the difference in the levels of execution complexity. The 

greedy technique, inherent to Huffman coding, was notably easier to apply in contrast to the divide-and-conquer approach. 

Generally, despite the comparable time and space challenges of both approaches, it is recommended to prioritize the native approach 

due to its straightforward implementation. We performed multiple iterations of the algorithms using the greedy and divide and  

conquer methods, with different string lengths. Subsequently, we computed the mean outcomes for every string length. Both 

programs were tested using a standardized set of randomly generated strings.  The compression ratio is a measure of the space  

saved as a percentage compared to the original size of the compressed string. 

 

Table 1. Divide and Conquer Data 

 

String Length Time to Execute (ms) Compression Ratio 

10 0.6 0.575 

25 1 0.47 

50 1.2 0.382 

100 2.8 0.32 

500 7.4 0.299 
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1000 11 0.297 

10000 48.6 0.296 

50000 146.6 0.295 

Table 2. Greedy Data 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1. Time Complexity comparison between Divide and Conquer and Greedy Technique 

 

 
 

Figure 2. Comparison Ratio between Divide and Conquer and Greedy Technique  

 

According to the trends depicted in these graphs, greedy and divide-and-conquer algorithms exhibit similar performance for small 

input sizes. Nevertheless, when dealing with substantial input sizes, the greedy method will outperform other approaches. The  

execution time graph reveals that the line representing the divide and conquer approach exhibits a resemblance to a linear graph, 

but the greedy method demonstrates a closer resemblance to a logarithmic graph. When considering the compression ratio, we 

observe that the amount of space saved drops to a fixed number as the size of the input grows. The reason behind this is that we 
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conducted tests on our programs utilizing a collection of randomly generated strings, resulting in the normalization of the 

distribution of repeated characters and thus increasing the size of the strings.

 

 

6. CONCLUSION 

 

The research project effectively devised and executed Huffman coding by integrating the greedy and divide-and-conquer 

approaches. We quantified the temporal and spatial efficiencies attained by these techniques. Our research shows that both methods 

effectively compress data, but the greedy technique is more time efficient because it is less complex and computationally costly. 

Nevertheless, the divide-and-conquer strategy significantly improved the adaptability and ease of implementing intricate systems, 

albeit with a modest trade-off in time efficiency. The study emphasizes the necessity of discovering effective algorithmic techniques 

for data compression to improve efficiency and user experience. Our research has provided us with a comprehensive understanding 

of many data compression strategies, including but not limited to Huffman coding. Possessing this knowledge is crucial for future 

projects that necessitate sophisticated data compression techniques. 
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